Грамотное преобразование рациональных выражений. Преобразование рациональных выражений — Гипермаркет знаний Преобразование рациональных выражений примеры с решением

Урок и презентация на тему: "Преобразование рациональных выражений. Примеры решения задач"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 8 класса
Пособие к учебнику Муравина Г.К. Пособие к учебнику Макарычева Ю.Н.

Понятие о рациональном выражении

Понятие "рациональное выражение" схоже с понятием "рациональная дробь". Выражение также представляется в виде дроби. Только в числители у нас - не числа, а различного рода выражения. Чаще всего этого многочлены. Алгебраическая дробь - дробное выражение, состоящее из чисел и переменных.

При решении многих задач в младших классах после выполнения арифметических операций мы получали конкретные числовые значения, чаще всего дроби. Теперь после выполнения операций мы будем получать алгебраические дроби. Ребята, помните: чтобы получить правильный ответ, необходимо максимально упростить выражение, с которым вы работаете. Надо получить самую маленькую степень, какую возможно; одинаковые выражения в числители и знаменатели стоит сократить; с выражениями, которые можно свернуть, надо так и поступить. То есть после выполнения ряда действий мы должны получить максимально простую алгебраическую дробь.

Порядок действий с рациональными выражениями

Порядок действий при выполнении операций с рациональными выражениями такой же, как и при арифметических операциях. Сначала выполняются действия в скобках, потом – умножение и деление, возведение в степень и наконец – сложение и вычитание.

Доказать тождество – это значит показать, что при всех значениях переменных правая и левая части равны. Примеров с доказательством тождеств очень много.

К основным способам решения тождеств относятся.

  • Преобразование левой части до равенства с правой.
  • Преобразование правой части до равенства с левой.
  • Преобразование левой и правой части по отдельности, до тех пор пока не получится одинаковое выражение.
  • Из левой части вычитают правую, и в итоге должен получиться нуль.

Преобразование рациональных выражений. Примеры решения задач

Пример 1.
Докажите тождество:

$(\frac{a+5}{5a-1}+\frac{a+5}{a+1}):{\frac{a^2+5a}{1-5a}}+\frac{a^2+5}{a+1}=a-1$.

Решение.
Очевидно, нам надо преобразовать левую часть.
Сначала выполним действия в скобках:

1) $\frac{a+5}{5a-1}+\frac{a+5}{a+1}=\frac{(a+5)(a+1)+(a+5)(5a-1)}{(a+1)(5a-1)}=$
$=\frac{(a+5)(a+1+5a-1)}{(a+1)(5a-1)}=\frac{(a+5)(6a)}{(a+1)(5a-1)}$

.

Выносить общие множители надо стараться по максимуму.
2) Преобразуем выражение, на которое делим:

$\frac{a^2+5a}{1-5a}=\frac{a(a+5)}{(1-5a}=\frac{a(a+5)}{-(5a-1)}$

.
3) Выполним операцию деления:

$\frac{(a+5)(6a)}{(a+1)(5a-1)}:\frac{a(a+5)}{-(5a-1)}=\frac{(a+5)(6a)}{(a+1)(5a-1)}*\frac{-(5a-1)}{a(a+5)}=\frac{-6}{a+1}$.

4) Выполним операцию сложения:

$\frac{-6}{a+1}+\frac{a^2+5}{a+1}=\frac{a^2-1}{a+1}=\frac{(a-1)(a+1)}{a+})=a-1$.

Правая и левая части совпали. Значит, тождество доказано.
Ребята, при решении данного примера нам понадобилось знание многих формул и операций. Мы видим, что после преобразования большое выражение превратилось совсем в маленькое. При решении почти всех задач, обычно преобразования приводят к простым выражениям.

Пример 2.
Упростите выражение:

$(\frac{a^2}{a+b}-\frac{a^3}{a^2+2ab+b^2}):(\frac{a}{a+b}-\frac{a^2}{a^2-b^2})$.

Решение.
Начнем с первых скобок.

1. $\frac{a^2}{a+b}-\frac{a^3}{a^2+2ab+b^2}=\frac{a^2}{a+b}-\frac{a^3}{(a+b)^2}=\frac{a^2(a+b)-a^3}{(a+b)^2}=$
$=\frac{a^3+a^2 b-a^3}{(a+b)^2}=\frac{a^2b}{(a+b)^2}$.

2. Преобразуем вторые скобки.

$\frac{a}{a+b}-\frac{a^2}{a^2-b^2}=\frac{a}{a+b}-\frac{a^2}{(a-b)(a+b)}=\frac{a(a-b)-a^2}{(a-b)(a+b)}=$
$=\frac{a^2-ab-a^2}{(a-b)(a+b)}=\frac{-ab}{(a-b)(a+b)}$.

3. Выполним деление.

$\frac{a^2b}{(a+b)^2}:\frac{-ab}{(a-b)(a+b)}=\frac{a^2b}{(a+b)^2}*\frac{(a-b)(a+b)}{(-ab)}=$
$=-\frac{a(a-b)}{a+b}$

.

Ответ: $-\frac{a(a-b)}{a+b}$.

Пример 3.
Выполните действия:

$\frac{k-4}{k-2}:(\frac{80k}{(k^3-8}+\frac{2k}{k^2+2k+4}-\frac{k-16}{2-k})-\frac{6k+4}{(4-k)^2}$.


Решение.
Как всегда надо начинать со скобок.

1. $\frac{80k}{k^3-8}+\frac{2k}{k^2+2k+4}-\frac{k-16}{2-k}=\frac{80k}{(k-2)(k^2+2k+4)} +\frac{2k}{k^2+2k+4}+\frac{k-16}{k-2}=$

$=\frac{80k+2k(k-2)+(k-16)(k^2+2k+4)}{(k-2)(k^2+2k+4)}=\frac{80k+2k^2-4k+k^3+2k^2+4k-16k^2-32k-64}{(k-2)(k^2+2k+4)}=$

$=\frac{k^3-12k^2+48k-64}{(k-2)(k^2+2k+4)}=\frac{(k-4)^3}{(k-2)(k^2+2k+4)}$.

2. Теперь выполним деление.

$\frac{k-4}{k-2}:\frac{(k-4)^3}{(k-2)(k^2+2k+4)}=\frac{k-4}{k-2}*\frac{(k-2)(k^2+2k+4)}{(k-4)^3}=\frac{(k^2+2k+4)}{(k-4)^2}$.

3. Воспользуемся свойством: $(4-k)^2=(k-4)^2$.
4. Выполним операцию вычитания.

$\frac{(k^2+2k+4)}{(k-4)^2}-\frac{6k+4}{(k-4)^2}=\frac{k^2-4k}{(k-4)^2}=\frac{k(k-4)}{(k-4)^2}=\frac{k}{k-4}$.


Как мы раньше говорили, упрощать дробь надо максимально.
Ответ: $\frac{k}{k-4}$.

Задачи для самостоятельного решения

1. Докажите тождество:

$\frac{b^2-14}{b-4}-(\frac{3-b}{7b-4}+\frac{b-3}{b-4})*\frac{4-7b}{9b-3b^2}=b+4$.


2. Упростите выражение:

$\frac{4(z+4)^2}{z-2}*(\frac{z}{2z-4}-\frac{z^2+4}{2z^2-8}-\frac{2}{z^2+2z})$.


3. Выполните действия:

$(\frac{a-b}{a^2+2ab+b^2}-\frac{2a}{(a-b)(a+b)}+\frac{a-b}{(a-b)^2})*\frac{a^4-b^4}{8ab^2}+\frac{2b^2}{a^2-b^2}$.

Преобразование рациональных выражений

В этом уроке поработаем с рациональными выражениями. На конкретных примерах рассмотрим методы решения задач на преобразования рациональных выражений и доказательство связанных с ними тождеств.

Рациональное выражение - алгебраическое выражение, составленное из чисел, буквенных переменных, арифметических операций, возведения в натуральную степень, и знаков последовательности этих действий (скобок). Вместе со словосочетанием «рациональное выражение» в алгебре используют иногда термины «целое» или «дробное».

Например, выражения

являются и рациональными, и целыми.

Выражения

являются и рациональными, и дробными, т.к. в знаменателе находится выражение с переменной.

Не надо забывать, что дробь теряет смысл, если знаменатель обращается в нуль.

Основной целью урока будет приобретение опыта при решении задач на упрощение рациональных выражений.

Упрощение рациональных выражений — это применение тождественных преобразований, с целью упростить запись выражения (сделать короче и удобнее для дальнейшей работы).

Для преобразования рациональных выражений нам потребуются правила сложения (вычитания), умножения, деления и возведения в степень алгебраических дробей, все эти действия совершаются по тем же правилам, что и действия с обыкновенными дробями:

А также формулы сокращенного умножения:

При решении примеров по преобразованию рациональных выражений следует соблюдать следующий порядок действий: сначала выполняются действия в скобках, затем произведение/деление (либо возведение в степень), а затем действия сложения/вычитания.

Итак, рассмотрим пример 1:

необходимо упростить выражение

Во-первых, выполняем действия в скобках.

Приводим алгебраические дроби к общему знаменателю и осуществляем сложение (вычитание) дробей с одинаковыми знаменателями по правилам, записанным выше.

Используя формулу сокращенного выражения (а именно квадрат разности), полученное выражение принимает вид:

Во-вторых, по правилам умножения алгебраических дробей перемножаем числители и отдельно знаменатели:

А затем сокращаем полученное выражение:

В результате проведенных преобразований получаем простое выражение

Рассмотрим более сложный пример 2 преобразования рациональных выражений: необходимо доказать тождество:

Доказать тождество - это установить, что при всех допустимых значениях переменных его левая и правая части равны.

Доказательство:

Чтобы доказать данное тождество, необходимо преобразовать выражение в левой части. Для этого следует соблюдать порядок действий, изложенный выше: в первую очередь выполняются действия в скобках, затем умножение, а затем уже сложение.

Итак, действие 1:

выполнить сложение/вычитание выражения в скобке.

Для этого раскладываем на множители выражения в знаменателях дробей и приводим данные дроби к общему знаменателю.

Так в знаменателе первой дроби выносим за скобку 3, в знаменателе второй - выносим знак минус и по формуле сокращенного умножения раскладываем на два множителя, а в знаменателе третьей дроби выносим за скобку x.

Общим знаменателем этих трех дробей будет выражение

Действие 2:

выполнить умножение дроби

Для этого прежде следует разложить на множители числитель первой дроби и возвести эту дробь в степень 2.

А при умножении дробей выполнить соответствующее сокращение.

Действие 3:

Суммируем первую дробь исходного выражения и получившуюся дробь

Для этого сначала разложим на множители числитель и знаменатель первой дроби и сократим:

Теперь остается только сложить полученные алгебраические дроби с разными знаменателями:

Таким образом, в результате 3-х действий и упрощения левой части тождества мы получили выражение из правой его части, а следовательно, доказали это тождество. Однако напомним, что тождество справедливо лишь для допустимых значений переменной x. Таковыми в данном примере являются любые значения x, кроме тех, которые обращают знаменатели дробей в нуль. Значит, допустимыми являются любые значения x, кроме тех, при которых выполняется хотя бы одно из равенств:

Недопустимыми будут значения:

Итак, на конкретных примерах мы рассмотрели решение задач на преобразования рациональных выражений и доказательство связанных с ними тождеств.

Список использованной литературы:

  1. Мордкович А.Г. «Алгебра» 8 класс. В 2 ч. Ч.1. Учебник для общеобразовательных учреждений/ А.Г. Мордкович. – 9-е изд., перераб. – М.: Мнемозина, 2007. – 215с.: ил.
  2. Мордкович А.Г. «Алгебра» 8 класс. В 2 ч. Ч.2. Задачник для общеобразовательных учреждений / А.Г. Мордкович, Т.Н. Мишустина, Е.Е. Тульчинская.. – 8-е изд., – М.: Мнемозина, 2006 – 239с.
  3. Алгебра. 8 класс. Контрольные работы для учащихся образовательных учреждений Л.А. Александрова под ред. А.Г. Мордковича 2-е изд., стер. - М.:Мнемозина 2009. - 40с.
  4. Алгебра. 8 класс. Самостоятельные работы для учащихся образовательных учреждений: к учебнику А.Г. Мордковича, Л.А. Александрова под ред. А.Г. Мордковича. 9-е изд., стер. - М.: Мнемозина 2013. - 112с.

Прежде всего, чтобы научиться работать с рациональными дробями без ошибок, необходимо выучить формулы сокращённого умножения. И не просто выучить — их необходимо распознавать даже тогда, когда в роли слагаемых выступают синусы, логарифмы и корни.

Однако основным инструментом остаётся разложение числителя и знаменателя рациональной дроби на множители. Этого можно добиться тремя различными способами:

  1. Собственно, по формула сокращённого умножения: они позволяют свернуть многочлен в один или несколько множителей;
  2. С помощью разложения квадратного трёхчлена на множители через дискриминант. Этот же способ позволяет убедиться, что какой-либо трёхчлен на множители вообще не раскладывается;
  3. Метод группировки — самый сложный инструмент, но это единственный способ, который работает, если не сработали два предыдущих.

Как вы уже, наверное, догадались из названия этого видео, мы вновь поговорим о рациональных дробях. Буквально несколько минут назад у меня закончилось занятие с одним десятиклассником, и там мы разбирали именно эти выражения. Поэтому данный урок будет предназначен именно для старшеклассников.

Наверняка у многих сейчас возникнет вопрос: «Зачем ученикам 10-11 классов изучать такие простые вещи как рациональные дроби, ведь это проходится в 8 классе?». Но в том то и беда, что большинство людей эту тему именно «проходят». Они в 10-11 классе уже не помнят, как делается умножение, деление, вычитание и сложение рациональных дробей из 8-го класса, а ведь именно на этих простых знаниях строятся дальнейшие, более сложные конструкции, как решение логарифмических, тригонометрических уравнений и многих других сложных выражений, поэтому без рациональных дробей делать в старших классах практически нечего.

Формулы для решения задач

Давайте перейдем к делу. Прежде всего, нам потребуется два факта — два комплекта формул. Прежде всего, необходимо знать формулы сокращенного умножения:

  • ${{a}^{2}}-{{b}^{2}}=\left(a-b \right)\left(a+b \right)$ — разность квадратов;
  • ${{a}^{2}}\pm 2ab+{{b}^{2}}={{\left(a\pm b \right)}^{2}}$ — квадрат суммы или разности;
  • ${{a}^{3}}+{{b}^{3}}=\left(a+b \right)\left({{a}^{2}}-ab+{{b}^{2}} \right)$ — сумма кубов;
  • ${{a}^{3}}-{{b}^{3}}=\left(a-b \right)\left({{a}^{2}}+ab+{{b}^{2}} \right)$ — разность кубов.

В чистом виде они ни в каких примерах и в реальных серьезных выражениях не встречаются. Поэтому наша задача состоит в том, чтобы научиться видеть под буквами $a$ и $b$ гораздо более сложные конструкции, например, логарифмы, корни, синусы и т.д. Научиться видеть это можно лишь при помощи постоянной практики. Именно поэтому решать рациональные дроби совершенно необходимо.

Вторая, совершенно очевидная формула — это разложение квадратного трехчлена на множители:

${{x}_{1}}$; ${{x}_{2}}$ — корни.

С теоретической частью мы разобрались. Но как решать реальные рациональные дроби, которые рассматриваются в 8 классе? Сейчас мы и потренируемся.

Задача № 1

\[\frac{27{{a}^{3}}-64{{b}^{3}}}{{{b}^{3}}-4}:\frac{9{{a}^{2}}+12ab+16{{b}^{2}}}{{{b}^{2}}+4b+4}\]

Давайте попробуем применить вышеописанные формулы к решению рациональных дробей. Прежде всего, хочу объяснить, зачем вообще нужно разложение на множители. Дело в том, что при первом взгляде на первую часть задания хочется сократить куб с квадратом, но делать этого категорически нельзя, потому что они являются слагаемыми в числителе и в знаменателе, но ни в коем случае не множителями.

Вообще, что такое сокращение? Сокращение — это использование основного правила работы с такими выражениями. Основное свойство дроби заключается в том, что мы можем числитель и знаменатель можем умножить на одно и то же число, отличное от «нуля». В данном случае, когда мы сокращаем, то, наоборот, делим на одно и то же число, отличное от «нуля». Однако мы должны все слагаемые, стоящие в знаменателе, разделить на одно и то же число. Делать так нельзя. И сокращать числитель со знаменателем мы вправе лишь тогда, когда оба они разложены на множители. Давайте это и сделаем.

Теперь необходимо посмотреть, сколько слагаемых находится в том или ином элементе, в соответствии с этим узнать, какую формулу необходимо использовать.

Преобразуем каждое выражение в точный куб:

Перепишем числитель:

\[{{\left(3a \right)}^{3}}-{{\left(4b \right)}^{3}}=\left(3a-4b \right)\left({{\left(3a \right)}^{2}}+3a\cdot 4b+{{\left(4b \right)}^{2}} \right)\]

Давайте посмотрим на знаменатель. Разложим его по формуле разности квадратов:

\[{{b}^{2}}-4={{b}^{2}}-{{2}^{2}}=\left(b-2 \right)\left(b+2 \right)\]

Теперь посмотрим на вторую часть выражения:

Числитель:

Осталось разобраться со знаменателем:

\[{{b}^{2}}+2\cdot 2b+{{2}^{2}}={{\left(b+2 \right)}^{2}}\]

Давайте перепишем всю конструкцию с учетом вышеперечисленных фактов:

\[\frac{\left(3a-4b \right)\left({{\left(3a \right)}^{2}}+3a\cdot 4b+{{\left(4b \right)}^{2}} \right)}{\left(b-2 \right)\left(b+2 \right)}\cdot \frac{{{\left(b+2 \right)}^{2}}}{{{\left(3a \right)}^{2}}+3a\cdot 4b+{{\left(4b \right)}^{2}}}=\]

\[=\frac{\left(3a-4b \right)\left(b+2 \right)}{\left(b-2 \right)}\]

Нюансы умножения рациональных дробей

Ключевой вывод из этих построений следующий:

  • Далеко не каждый многочлен раскладывается на множители.
  • Даже если он и раскладывается, необходимо внимательно смотреть, по какой именно формуле сокращенного умножения.

Для этого, во-первых, нужно оценить, сколько всего слагаемых (если их два, то все, что мы можем сделать, то это разложить их либо по сумме разности квадратов, либо по сумме или разности кубов; а если их три, то это, однозначно, либо квадрат суммы, либо квадрат разности). Очень часто бывает так, что или числитель, или знаменатель вообще не требует разложения на множители, он может быть линейным, либо дискриминант его будет отрицательным.

Задача № 2

\[\frac{3-6x}{2{{x}^{2}}+4x+8}\cdot \frac{2x+1}{{{x}^{2}}+4-4x}\cdot \frac{8-{{x}^{3}}}{4{{x}^{2}}-1}\]

В целом, схема решения этой задачи ничем не отличается от предыдущей — просто действий будет больше, и они станут разнообразнее.

Начнем с первой дроби: посмотрим на ее числитель и сделаем возможные преобразования:

Теперь посмотрим на знаменатель:

Со второй дробью: в числителе вообще ничего нельзя сделать, потому что это линейное выражение, и вынести из него какой-либо множитель нельзя. Посмотрим на знаменатель:

\[{{x}^{2}}-4x+4={{x}^{2}}-2\cdot 2x+{{2}^{2}}={{\left(x-2 \right)}^{2}}\]

Идем к третьей дроби. Числитель:

Разберемся со знаменателем последней дроби:

Перепишем выражение с учетом вышеописанных фактов:

\[\frac{3\left(1-2x \right)}{2\left({{x}^{2}}+2x+4 \right)}\cdot \frac{2x+1}{{{\left(x-2 \right)}^{2}}}\cdot \frac{\left(2-x \right)\left({{2}^{2}}+2x+{{x}^{2}} \right)}{\left(2x-1 \right)\left(2x+1 \right)}=\]

\[=\frac{-3}{2\left(2-x \right)}=-\frac{3}{2\left(2-x \right)}=\frac{3}{2\left(x-2 \right)}\]

Нюансы решения

Как видите, далеко не все и не всегда упирается в формулы сокращенного умножения — иногда просто достаточно вынести за скобки константу или переменную. Однако бывает и обратная ситуация, когда слагаемых настолько много или они так построены, что формулы сокращенного умножения к ним вообще невозможно. В этом случае к нам на помощь приходит универсальный инструмент, а именно, метод группировки. Именно это мы сейчас и применим в следующей задаче.

Задача № 3

\[\frac{{{a}^{2}}+ab}{5a-{{a}^{2}}+{{b}^{2}}-5b}\cdot \frac{{{a}^{2}}-{{b}^{2}}+25-10a}{{{a}^{2}}-{{b}^{2}}}\]

Разберем первую часть:

\[{{a}^{2}}+ab=a\left(a+b \right)\]

\[=5\left(a-b \right)-\left(a-b \right)\left(a+b \right)=\left(a-b \right)\left(5-1\left(a+b \right) \right)=\]

\[=\left(a-b \right)\left(5-a-b \right)\]

Давайте перепишем исходное выражение:

\[\frac{a\left(a+b \right)}{\left(a-b \right)\left(5-a-b \right)}\cdot \frac{{{a}^{2}}-{{b}^{2}}+25-10a}{{{a}^{2}}-{{b}^{2}}}\]

Теперь разберемся со второй скобкой:

\[{{a}^{2}}-{{b}^{2}}+25-10a={{a}^{2}}-10a+25-{{b}^{2}}=\left({{a}^{2}}-2\cdot 5a+{{5}^{2}} \right)-{{b}^{2}}=\]

\[={{\left(a-5 \right)}^{2}}-{{b}^{2}}=\left(a-5-b \right)\left(a-5+b \right)\]

Так как два элемента не получилось сгруппировать, то мы сгруппировали три. Осталось разобраться лишь со знаменателем последней дроби:

\[{{a}^{2}}-{{b}^{2}}=\left(a-b \right)\left(a+b \right)\]

Теперь перепишем всю нашу конструкцию:

\[\frac{a\left(a+b \right)}{\left(a-b \right)\left(5-a-b \right)}\cdot \frac{\left(a-5-b \right)\left(a-5+b \right)}{\left(a-b \right)\left(a+b \right)}=\frac{a\left(b-a+5 \right)}{{{\left(a-b \right)}^{2}}}\]

Задача решена, и больше ничего упростить здесь нельзя.

Нюансы решения

С группировкой мы разобрались и получили еще один очень мощный инструмент, который расширяет возможности по разложению на множители. Но проблема в том, что в реальной жизни нам никто не будет давать вот такие рафинированные примеры, где есть несколько дробей, у которых нужно лишь разложить на множитель числитель и знаменатель, а потом по возможности их сократить. Реальные выражения будут гораздо сложнее.

Скорее всего, помимо умножения и деления там будут присутствовать вычитания и сложения, всевозможные скобки — вообщем, придется учитывать порядок действий. Но самое страшное, что при вычитании и сложении дробей с разными знаменателями их придется приводить к одному общему. Для этого каждый из них нужно будет раскладывать на множители, а потом преобразовывать эти дроби: приводить подобные и многое другое. Как это сделать правильно, быстро, и при этом получить однозначно правильный ответ? Именно об этом мы и поговорим сейчас на примере следующей конструкции.

Задача № 4

\[\left({{x}^{2}}+\frac{27}{x} \right)\cdot \left(\frac{1}{x+3}+\frac{1}{{{x}^{2}}-3x+9} \right)\]

Давайте выпишем первую дробь и попытаемся разобраться с ней отдельно:

\[{{x}^{2}}+\frac{27}{x}=\frac{{{x}^{2}}}{1}+\frac{27}{x}=\frac{{{x}^{3}}}{x}+\frac{27}{x}=\frac{{{x}^{3}}+27}{x}=\frac{{{x}^{3}}+{{3}^{3}}}{x}=\]

\[=\frac{\left(x+3 \right)\left({{x}^{2}}-3x+9 \right)}{x}\]

Переходим ко второй. Сразу посчитаем дискриминант знаменателя:

Он на множители не раскладывается, поэтому запишем следующее:

\[\frac{1}{x+3}+\frac{1}{{{x}^{2}}-3x+9}=\frac{{{x}^{2}}-3x+9+x+3}{\left(x+3 \right)\left({{x}^{2}}-3x+9 \right)}=\]

\[=\frac{{{x}^{2}}-2x+12}{\left(x+3 \right)\left({{x}^{2}}-3x+9 \right)}\]

Числитель выпишем отдельно:

\[{{x}^{2}}-2x+12=0\]

Следовательно, этот многочлен на множители не раскладывается.

Максимум, что мы могли сделать и разложить, мы уже сделали.

Итого переписываем нашу исходную конструкцию и получаем:

\[\frac{\left(x+3 \right)\left({{x}^{2}}-3x+9 \right)}{x}\cdot \frac{{{x}^{2}}-2x+12}{\left(x+3 \right)\left({{x}^{2}}-3x+9 \right)}=\frac{{{x}^{2}}-2x+12}{x}\]

Все, задача решена.

Если честно, это была не такая уж и сложная задача: там все легко раскладывалось на множители, быстро приводились подобные слагаемые, и все красиво сокращалось. Поэтому сейчас давайте попробуем решить задачку посерьезней.

Задача № 5

\[\left(\frac{x}{{{x}^{2}}+2x+4}+\frac{{{x}^{2}}+8}{{{x}^{3}}-8}-\frac{1}{x-2} \right)\cdot \left(\frac{{{x}^{2}}}{{{x}^{2}}-4}-\frac{2}{2-x} \right)\]

Сначала давайте разберемся с первой скобкой. С самого начала разложим на множители знаменатель второй дроби отдельно:

\[{{x}^{3}}-8={{x}^{3}}-{{2}^{3}}=\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)\]

\[\frac{x}{{{x}^{2}}+2x+4}+\frac{{{x}^{2}}+8}{{{x}^{3}}-8}-\frac{1}{{{x}^{2}}}=\]

\[=\frac{x}{{{x}^{2}}+2x+4}+\frac{{{x}^{2}}+8}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}-\frac{1}{x-2}=\]

\[=\frac{x\left(x-2 \right)+{{x}^{2}}+8-\left({{x}^{2}}+2x+4 \right)}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}=\]

\[=\frac{{{x}^{2}}-2x+{{x}^{2}}+8-{{x}^{2}}-2x-4}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}=\]

\[=\frac{{{x}^{2}}-4x+4}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}=\frac{{{\left(x-2 \right)}^{2}}}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}=\frac{x-2}{{{x}^{2}}+2x+4}\]

Теперь поработаем со второй дробью:

\[\frac{{{x}^{2}}}{{{x}^{2}}-4}-\frac{2}{2-x}=\frac{{{x}^{2}}}{\left(x-2 \right)\left(x+2 \right)}-\frac{2}{2-x}=\frac{{{x}^{2}}+2\left(x-2 \right)}{\left(x-2 \right)\left(x+2 \right)}=\]

\[=\frac{{{x}^{2}}+2x+4}{\left(x-2 \right)\left(x+2 \right)}\]

Возвращаемся к нашей исходной конструкции и записываем:

\[\frac{x-2}{{{x}^{2}}+2x+4}\cdot \frac{{{x}^{2}}+2x+4}{\left(x-2 \right)\left(x+2 \right)}=\frac{1}{x+2}\]

Ключевые моменты

Еще раз ключевые факты сегодняшнего видеоурока:

  1. Необходимо знать «назубок» формулы сокращенного умножения — и не просто знать, а уметь видеть в тех выражениях, которые будут вам встречаться в реальных задачах. Помочь нам в этом может замечательное правило: если слагаемых два, то это либо разность квадратов, либо разность или сумма кубов; если три — это может быть только квадрат суммы или разности.
  2. Если какая-либо конструкция не раскладывается при помощи формул сокращенного умножения, то нам на помощь приходит либо стандартная формула разложения трехчленов на множители, либо метод группировки.
  3. Если что-то не получается, внимательно посмотрите на исходное выражение — а требуются ли вообще какие-то преобразования с ним. Возможно, достаточно будет просто вынести множитель за скобку, а это очень часто бывает просто константа.
  4. В сложных выражениях, где требуется выполнить несколько действий подряд, не забывайте приводить к общему знаменателю, и лишь после этого, когда все дроби приведены к нему, обязательно приведите подобное в новом числителе, а потом новый числитель еще раз разложите на множители — возможно, что-то сократится.

Вот и все, что я хотел вам рассказать сегодня о рациональных дробях. Если что-то непонятно — на сайте еще куча видеоуроков, а также куча задач для самостоятельного решения. Поэтому оставайтесь с нами!

На предыдущем уроке уже было введено понятие рационального выражения, на сегодняшнем уроке мы продолжаем работать с рациональными выражениями и основной упор делаем на их преобразования. На конкретных примерах мы рассмотрим методы решения задач на преобразования рациональных выражений и доказательство связанных с ними тождеств.

Тема: Алгебраические дроби. Арифметические операции над алгебраическими дробями

Урок: Преобразование рациональных выражений

Вспомним сначала определение рационального выражения.

Определение. Рациональное выражение - алгебраическое выражение, не содержащее корней и включающее только действия сложения, вычитания, умножения и деления (возведения в степень).

Под понятием «преобразовать рациональное выражение» мы имеем в виду, прежде всего, его упрощение. А это осуществляется в известном нам порядке действий: сначала действия в скобках, затем произведение чисел (возведение в степень), деление чисел, а затем действия сложения/вычитания.

Основной целью сегодняшнего урока будет приобретение опыта при решении более сложных задач на упрощение рациональных выражений.

Пример 1.

Решение. Сначала может показаться, что указанные дроби можно сократить, т. к. выражения в числителях дробей очень похожи на формулы полных квадратов соответствующих им знаменателей. В данном случае важно не спешить, а отдельно проверить, так ли это.

Проверим числитель первой дроби: . Теперь числитель второй: .

Как видно, наши ожидания не оправдались, и выражения в числителях не являются полными квадратами, т. к. у них отсутствует удвоение произведения. Такие выражения, если вспомнить курс 7 класса, называют неполными квадратами. Следует быть очень внимательными в таких случаях, т. к. перепутывание формулы полного квадрата с неполным - очень частая ошибка, а подобные примеры проверяют внимательность учащегося.

Поскольку сокращение невозможно, то выполним сложение дробей. У знаменателей нет общих множителей, поэтому они просто перемножаются для получения наименьшего общего знаменателя, а дополнительным множителем для каждой из дробей является знаменатель другой дроби.

Конечно же, далее можно раскрыть скобки и привести затем подобные слагаемые, однако, в данном случае можно обойтись меньшими затратами сил и заметить, что в числителе первое слагаемое является формулой суммы кубов, а второе - разности кубов. Для удобства вспомним эти формулы в общем виде:

В нашем же случае выражения в числителе сворачиваются следующим образом:

, второе выражение аналогично. Имеем:

Ответ. .

Пример 2. Упростить рациональное выражение .

Решение. Данный пример похож на предыдущий, но здесь сразу видно, что в числителях дробей находятся неполные квадраты, поэтому сокращение на начальном этапе решения невозможно. Аналогично предыдущему примеру складываем дроби:

Здесь мы аналогично способу, указанному выше, заметили и свернули выражения по формулам суммы и разности кубов.

Ответ. .

Пример 3. Упростить рациональное выражение .

Решение. Можно заметить, что знаменатель второй дроби раскладывается на множители по формуле суммы кубов. Как мы уже знаем, разложение знаменателей на множители является полезным для дальнейшего поиска наименьшего общего знаменателя дробей.

Укажем наименьший общий знаменатель дробей, он равен: , т. к. делится на знаменатель третьей дроби, а первое выражение вообще является целым, и для него подойдет любой знаменатель. Указав очевидные дополнительные множители, запишем:

Ответ.

Рассмотрим более сложный пример с «многоэтажными» дробями.

Пример 4. Доказать тождество при всех допустимых значениях переменной.

Доказательство. Для доказательства указанного тождества постараемся упростить его левую часть (сложную) до того простого вида, который от нас требуется. Для этого выполним все действия с дробями в числителе и знаменателе, а затем разделим дроби и упростим результат.

Доказано при всех допустимых значениях переменной.

Доказано.

На следующем уроке мы подробно рассмотрим более сложные примеры на преобразование рациональных выражений.

Список литературы

1. Башмаков М.И. Алгебра 8 класс. - М.: Просвещение, 2004.

2. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. - 5-е изд. - М.: Просвещение, 2010.

3. Никольский С.М., Потапов М.А., Решетников Н.Н., Шевкин А.В. Алгебра 8 класс. Учебник для общеобразовательных учреждений. - М.: Просвещение, 2006.

2. Разработки уроков, презентации, конспекты занятий ().

Домашнее задание

1. №96-101. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. - 5-е изд. - М.: Просвещение, 2010.

2. Упростите выражение .

3. Упростите выражение .

4. Докажите тождество .

Понравилась статья? Поделитесь ей
Наверх