Подключение светодиода к микроконтроллеру. Подключаем кнопку к микроконтроллеру ATtiny2313, простая программа

Подключение кнопки к линии порта ввода/вывода

Изучив данный материал, в котором все очень детально и подробно описано с большим количеством примеров, вы сможете легко овладеть и программировать порты ввода/вывода микроконтроллеров AVR.

  • Часть 2. Подключение светодиода к линии порта ввода/вывода
  • Часть 3. Подключение транзистора к линии порта ввода/вывода
Пример будем рассматривать на микроконтроллере ATMega8 .

Программу писать будем в Atmel Studio 6.0 .

Эмулировать схему будем в Proteus 7 Professional .

Самой распространенной задачей при создании проектов для микроконтроллеров является подключение кнопок. Несмотря на простоту, эта задача имеет существенные, возможно и неочевидные особенности.
Если подключить один из контактов кнопки, например, к общему проводу («земле»), а второй к выбранной линии порта ввода/вывода микроконтроллера, который переключен в режим «Вход», то выяснится, что такой метод не работает. При нажатии кнопки линия порта микроконтроллера соединяется с землей, и программа будет считывать лог.«0» с этой линии порта ввода/вывода, но при отпущенной кнопке вывод микроконтроллера не будет соединен ни с чем, что часто и называют «висит в воздухе». В таком случае программа будет считать с вывода и лог.«0» и лог.«1» случайным образом, так как на не к чему не присоединённую линию порта ввода/вывода будут наводится наводки.
Правильное подключение предполагает, что в разомкнутом состоянии вывод микроконтроллера должен быть соединен через резистор, например с шиной питания, а в замкнутом - с землей, либо наоборот. Сопротивление резистора не должно быть слишком маленьким, чтобы ток, текущий через него при замкнутых контактах кнопки не был слишком большим. Обычно используют значения порядка 10-100 кОм.

Рис: Подключения кнопки с подтянутой шиной питания.

- при отжатой кнопке равно лог.«1»;
- при нажатой кнопке равно лог.«0»;

Рис: Подключения кнопки с подтянутой землей.
При таком подключении состояние линии порта ввода вывода будет:
- при отжатой кнопке равно лог.«0»;
- при нажатой кнопке равно лог.«1»;

- подключения к линии порта ввода/вывода кнопки с подтянутой шиной питания:

#include // Основная программа int main(void) { // Настраиваем порты ввода/вывода DDRB = 0b11111111; //Настраиваем все разряды порта B на режим "Выход" PORTB = 0b00000000; //Устанавливаем все разряды порта B в лог.«0» (На выходе порта напряжение равное GND) DDRD = 0b00000000; //Настраиваем все разряды порта D на режим "Вход" PORTD = 0b11111111; //Устанавливаем все разряды порта D в лог.«1» (На выходе порта напряжение равное Vcc) // Вечный цикл while (1) { //Проверяем: если состояние PD0 лог.«0» то кнопка нажата if ((PIND&(1 << PD0)) == 0) { //Состояние PB0 устанавливаем в лог.«1» PORTB |= (1 << PB0); } else { //Состояние PB0 устанавливаем в лог.«0» PORTB &= ~(1 << PB0); } } }

- подключения к линии порта ввода/вывода кнопки с подтянутой землей:

// Подключаем внешние библиотеки #include #include // Основная программа int main(void) { // Настраиваем порты ввода/вывода DDRB = 0b11111111; //Настраиваем все разряды порта B на режим "Выход" PORTB = 0b00000000; //Устанавливаем все разряды порта B в лог.«0» (На выходе порта напряжение равное GND) DDRD = 0b00000000; //Настраиваем все разряды порта D на режим "Вход" PORTD = 0b11111111; //Устанавливаем все разряды порта D в лог.«1» (На выходе порта напряжение равное Vcc) // Вечный цикл while (1) { //Проверяем: если состояние PD0 лог.«1» то кнопка нажата if ((PIND&(1 << PD0)) == 1) { //Состояние PB0 устанавливаем в лог.«1» PORTB |= (1 << PB0); } else { //Состояние PB0 устанавливаем в лог.«0» PORTB &= ~(1 << PB0); } } }

Мы провели эмуляцию схемы в программе Proteus, помигали светодиодом и научились прошивать наш виртуальный микроконтроллер. Наверняка многим из читателей пришла в голову мысль: “А можно ли помигать светодиодом, использую кнопку, подключенную к МК?

Да, разумеется, это возможно. Реализуется довольно легко. Причем можно сэмулировать кнопку как с фиксацией так и без фиксации. Причем в программе Proteus применить оба типа кнопок можно с помощью одного и того же одинакового макроса кнопки. В каких случаях это может быть полезно? Например, нам требуется осуществить выбор режимов работы устройства. Давайте разберем подробнее, как это реализовать с помощью микроконтроллера, и проведем эмуляцию в программе Proteus.


Для того, чтобы иметь наглядное представление, что у нас действительно выбор из двух режимов, мы соберем простенькую схемку на 4 светодиодах с управлением одной кнопкой. При первом варианте у нас поочередно загораются с первого по четвертый светодиоды. При втором варианте то же самое, но в обратной последовательнос ти, то есть с четвертого по первый. Единственное, что хочу уточнить, кнопка у нас опрашивается на нажатие или отжатие только перед началом эффекта. До тех пор, пока эффект не закончит свою работу, программа не реагирует на нажатие или отжатие кнопки.

Итак к делу. Так выглядит у нас наша схема в программе Proteus (кликните для увеличения):

В этой схеме мы уже видим отличия от той, которую собирали еще в прошлой статье. В левой части схемы мы видим обозначения кнопки и источника питания +5 вольт.

Как мы уже разобрали, питание и землю мы берем во вкладке “Терминал”. Обозначаются они у нас соответственно Power и Ground.

Обозначается у нас питание схемы треугольником с чертой, делящей его по высоте. Рядом, на рисунке, изображено обозначение кнопки. Справа от кнопки мы видим закрашенный красный круг с двухнаправленной стрелочкой. Если во время эмуляции нажать на него, то кнопка у нас зафиксируется и будет постоянно нажата. После повторного нажатия на него фиксация снимается.


Перед использованием нам нужно выбрать кнопку в библиотеке аналогично остальным деталям. Для этого нужно набрать в поле “Маска” слово “but”. Затем в поле “Результаты” слово “BUTTON”:


После этого кнопка появиться у нас в списке, вместе с выбранными деталями, применяемыми в проекте.

Какие порты у нас используются в проекте. Ниже на рисунке мы видим отходящие линии от портов РA0, РВ0, РВ1, РВ2 и РВ3. К порту В у нас подключены светодиоды, а к порту А – кнопка.

Итак, при нажатии, мы замыкаем цепь соединяющую +5 вольт с портом РА0 и верхним выводом резистора. Для чего у нас здесь вообще установлен резистор? Дело в том, что цепь кнопки должна быть замкнутой. После того как мы установили резистор, ток у нас течет от плюса питания через кнопку, резистор и дальше на землю.

Номинал резистора достаточно взять равным 200 Ом. Итак, когда мы нажимаем кнопку, мы соединяем порт РА0 с +5 вольт питания, и если мы опросим ножку РА0 на наличие напряжения или его отсутствие, мы сможем влиять на выполнение нашей программы.

Скрины с текстом нашей программы я привел ниже:


Итак отличия от прошлого проекта заключаются в том, что все 8 выводов порта РА мы конфигурируем на вход, выводы порта РВ0 – РВ3 мы конфигурируем на выход, а РВ4 – РВ7 на вход.


Затем мы используем в нашей программе проверку условия “ if”


Итак, мы видим в строчке после “if”, в скобках, условие выполнения. Код ниже выполняется, если на порту PA0 у нас присутствует логический ноль, или ноль вольт. Этот текст в скобках – сдвиг бита порта. Мы разберем в одной из следующих статей, а пока достаточно принять на веру, что этим мы опрашиваем кнопку на отжатие . Затем в фигурных скобках идет текст программы, который выполняется, если условие верно. Если условие не верно, программа продолжает выполняться дальше, пропустив текст в фигурных скобках.

Аналогично, с помощью условия “if” мы опрашиваем кнопку на нажатие . Обратите внимание, текст у нас в скобках изменился. Это означает что если на ножке РА0 у нас логическая единица, мы выполняем условие, то есть текст в фигурных скобках. То есть другими словами, у нас при отжатой кнопке, поочередно загораются и тухнут светодиоды с первого по четвертый, а при нажатии и удерживании, загораются и тухнут с четвертого по первый. Таким образом, мы можем влиять на выполнение программы, с помощью нажатия кнопки, опрашивая наличие на ней логического нуля, или логической единицы

Также , в котором находятся файл “сишник”, HEX и файл Протеуса.

А вот и видео

В следующих статьях будут устройства, которые должны управлять внешней нагрузкой. Под внешней нагрузкой я понимаю все, что прицеплено к ножкам микроконтроллера – светодиоды, лампочки, реле, двигатели, исполнительные устройства … ну Вы поняли. И как бы не была заезжена данная тема, но, чтобы избежать повторений в следующих статьях, я все-же рискну быть не оригинальным – Вы уж меня простите . Я кратенько, в рекомендательной форме, покажу наиболее распространенные способы подключения нагрузки (если Вы что-то захотите добавить – буду только рад).
Сразу договоримся, что речь идет о цифровом сигнале (микроконтроллер все-таки цифровое устройство) и не будем отходить от общей логики: 1 -включено, 0 -выключено. Начнем.


Нагрузкой постоянного тока являются: светодиоды, лампы, реле, двигатели постоянного тока, сервоприводы, различные исполнительные устройства и т.д. Такая нагрузка наиболее просто (и наиболее часто) подключается к микроконтроллеру.

1.1 Подключение нагрузки через резистор.
Самый простой и, наверно, чаще всего используемый способ, если речь идет о светодиодах.

Резистор нужен для того, чтобы ограничить ток протекающий, через ножку микроконтроллера до допустимых 20мА . Его называют балластным или гасящим. Примерно рассчитать величину резистора можно зная сопротивление нагрузки Rн.

Rгасящий = (5v / 0.02A) – Rн = 250 – Rн

Как видно, даже в самом худшем случае, когда сопротивление нагрузки равно нулю достаточно 250 Ом для того, что бы ток не превысил 20мА. А значит, если неохота чего-то там считать – ставьте 300 Ом и Вы защитите порт от перегрузки. Достоинство способа очевидно – простота.

1.2 Подключение нагрузки при помощи биполярного транзистора.
Если так случилась, что Ваша нагрузка потребляет более 20мА, то, ясное дело, резистор тут не поможет. Нужно как-то увеличить (читай усилить) ток. Что применяют для усиления сигнала? Правильно. Транзистор!


Для усиления удобней применять n-p-n транзистор, включенный по схеме ОЭ . При таком способе можно подключать нагрузку с большим напряжением питания, чем питание микроконтроллера. Резистор на базе – ограничительный. Может варьироваться в широких пределах (1-10 кОм), в любом случае транзистор будет работать в режиме насыщения. Транзистор может быть любойn-p-n транзистор. Коэффициент усиления, практически не имеет значения. Выбирается транзистор по току коллектора (нужный нам ток) и напряжению коллектор-эмиттер (напряжение которым запитывается нагрузка). Еще имеет значение рассеиваемая мощность – чтоб не перегрелся.

Из распространенных и легко доступных можно заюзать BC546, BC547, BC548, BC549 с любыми буквами (100мА), да и тот-же КТ315 сойдет (это у кого со старых запасов остались).
BC547.pdf - Даташит на биполярный транзистор BC547

1.3 Подключение нагрузки при помощи полевого транзистора.
Ну а если ток нашей нагрузки лежит в пределах десятка ампер? Биполярный транзистор применить не получиться, так как токи управления таким транзистором велики и скорей всего превысят 20мА. Выходом может служить или составной транзистор (читать ниже) или полевой транзистор (он же МОП, он же MOSFET). Полевой транзистор просто замечательная штука, так как он управляется не током, а потенциалом на затворе. Это делает возможным микроскопическим током на затворе управлять большими токами нагрузки.

Для нас подойдет любой n-канальный полевой транзистор. Выбираем, как и биполярный, по току, напряжению и рассеиваемой мощности.


При включении полевого транзистора нужно учесть ряд моментов:
– так как затвор, фактически, является конденсатором, то в моменты переключения транзистора через него текут большие токи (кратковременно). Для того чтобы ограничить эти токи в затвор ставиться ограничивающий резистор.
– транзистор управляется малыми токами и если выход микроконтроллера, к которому подключен затвор, окажется в высокоимпедансном Z-состоянии полевик начнет открываться-закрываться непредсказуемо, вылавливая помехи. Для устранения такого поведения ножку микроконтроллера нужно «прижать» к земле резистором порядка 10кОм.
У полевого транзистора на фоне всех его положительных качеств есть недостаток. Платой за управление малым током является медлительность транзистора. ШИМ, конечно, он потянет, но на превышение допустимой частоты он Вам ответит перегревом.

Для применения можно порекомендовать мощные транзисторы IRF630, IRF640. Их часто используют и поэтому их легко достать.
IRF640.pdf - Даташит на полевой транзистор IRF640

1.4 Подключение нагрузки при помощи составного транзистора Дарлингтона.
Альтернативой применения полевого транзистора при сильноточной нагрузке является применение составного транзистора Дарлингтона. Внешне это такой-же транзистор, как скажем, биполярный, но внутри для управления мощным выходным транзистором используется предварительная усилительная схема. Это позволяет малыми токами управлять мощной нагрузкой. Применение транзистора Дарлингтона не так интересно, как применение сборки таких транзисторов. Есть такая замечательная микросхема как ULN2003. В ее составе аж 7 транзисторов Дарлингтона, причем каждый можно нагрузить током до 500мА, причем их можно включать параллельно для увеличения тока.


Микросхема очень легко подключается к микроконтроллеру (просто ножка к ножке) имеет удобную разводку (вход напротив выхода) и не требует дополнительной обвязки. В результате такой удачной конструкции ULN2003 широко используется в радиолюбительской практике. Соответственно достать ее не составит труда.
ULN2003.pdf - Даташит на сборку Дарлингтонов ULN2003


2 НАГРУЗКА ПЕРЕМЕННОГО ТОКА.
Если Вам нужно управлять устройствами переменного тока (чаще всего 220v), то тут все сложней, но не на много.

2.1 Подключение нагрузки при помощи реле.
Самым простым и, наверное, самым надежным есть подключение при помощи реле. Катушка реле, сама собой, является сильноточной нагрузкой, поэтому напрямую к микроконтроллеру ее не включишь. Реле можно подключить через транзистор полевой или биполярный или через туже ULN2003, если нужно несколько каналов.

Достоинства такого способа большой коммутируемый ток (зависит от выбранного реле), гальваническая развязка. Недостатки: ограниченная скорость/частота включения и механический износ деталей.

2.2 Подключение нагрузки при помощи симистора (триака).
Если нужно управлять мощной нагрузкой переменного тока а особенно если нужно управлять мощностью выдаваемой на нагрузку (димеры), то Вам просто не обойтись без применения симистора (или триака). Симистор открывается коротким импульсом тока через управляющий электрод (причем как для отрицательной, так и для положительной полуволны напряжения). Закрывается симистор сам, в момент отсутствия напряжения на нем (при переходе напряжения через ноль). Вот тут начинаются сложности. Микроконтроллер должен контролировать момент перехода через ноль напряжения и в точно определенный момент подавать импульс для открытия симистора – это постоянная занятость контроллера. Еще одна сложность это отсутствие гальванической развязки у симистора. Приходится ее делать на отдельных элементах усложняя схему.


Хотя современные симисторы управляются довольно малым током и их можно подключить напрямую (через ограничительный резистор) к микроконтроллеру, из соображений безопасности приходится их включать через оптические развязывающие приборы. Причем это касается не только цепей управления симистором, но и цепей контроля нуля.


Довольно неоднозначный способ подключения нагрузки. Так как с одной стороны требует активного участия микроконтроллера и относительно сложного схемотехнического решения. С другой стороны позволяет очень гибко манипулировать нагрузкой. Еще один недостаток применения симисторов – большое количество цифрового шума, создаваемого при их работе – нужны цепи подавления.

Симисторы довольно широко используются, а в некоторых областях просто незаменимы, поэтому достать их не составляет каких либо проблем. Очень часто в радиолюбительстве применяют симисторы типа BT138.
BT138.pdf

2.3 Подключение нагрузки при помощи твердотельного реле.
С недавних пор у радиолюбителей появилась очень замечательная штука – твердотельные реле. Представляют они из себя оптические приборы (еще их называют оптореле), с одной стороны, в общем случае, стоит светодиод, а с другой полевой транзистор со светочувствительным затвором. Управляется эта штука малым током, а манипулировать может значительной нагрузкой.


Подключать твердотельное реле к микроконтроллеру очень просто – как светодиод – через резистор.
Достоинства налицо: малые размеры, отсутствие механического износа, возможность манипулировать большим током и напряжением и самое главное оптическая развязка от опасного напряжения. Нагрузка может быть как постоянного, так и переменного тока в зависимости от конструкции реле. Из недостатков следует отметить относительную медлительность (чаще всего для коммутации используется полевик) и довольно значительную стоимость реле.

Если не гнаться за завышенными характеристиками можно подобрать себе прибор по приемлемой цене. Например, реле CPC1030N управляется током от 2мА, при этом способно коммутировать нагрузку переменного и постоянного тока 120мА и 350v (очень полезная для радиолюбителей вещь!)
BT138.pdf - Даташит на симистор (триак) BT138
CPC1030N.pdf - Даташит на твердотельное реле CPC1030N


Распространенной задачей является подключение кнопок к микроконтроллеру. Несмотря на кажущуюся простоту, эта задача имеет некоторые, возможно неочевидные особенности.

Будем рассматривать наиболее простой и распространенный вариант кнопки, зачастую называемый тактовой кнопкой, имеющую два нормально разомкнутых контакта, замыкаемых при нажатии на кнопку.

Подключение кнопки к микроконтроллеру

Если мы подключим один из контактов, например, к общему проводу («земле»), а второй к выбранному выводу микроконтроллера, переключенного в режим входа, то выяснится, что такой метод не работает. При нажатии кнопки вывод микроконтроллера соединяется с землей, и программа будет считывать (с помощью функции digitalRead) логический 0 с этого вывода, но при отпущенной кнопке вывод микроконтроллера не будет соединен ни с какой линией, что часто называют «висит в воздухе». В таком режиме программа будет считать с вывода и 0 и 1 совершенно случайным образом.

Правильное подключение предполагает, что в разомкнутом состоянии вывод микроконтроллера должен быть соединен через резистор, например с шиной питания, а в замкнутом - с землей, либо наоборот. Сопротивление резистора не должно быть слишком маленьким, чтобы ток, текущий через него при замкнутых контактах кнопки не был слишком большим. Обычно используют значения порядка 10-100 кОм. Оба варианта подключения можно изобразить следующим образом:

Первый вариант предпочтительнее, поскольку подтягивающие к +5В резисторы уже есть внутри микроконтроллера – их нужно только программно включить. Кнопка будет либо соединять вывод микроконтроллера с землей, либо разъединять, и тогда он "притянется" резистором к +5В.

После того, как вывод микроконтроллера установлен в режим входа, чтобы включить на нем подтягивающий резистор нужно "записать" в него 1.

Пример программы, зажигающей светодиод на 13 выводе при нажатии кнопки на 2 выводе будет выглядеть примерно так:

Обращаем внимание на то, что значение, прочитанное с 2 вывода, инвертируется с помощью оператора «!», поскольку при нажатии на кнопку будет считываться «0», а при ее отпускании «1».

Дребезг контактов

На практике зачастую приходится бороться с таким явлением, как дребезг контактов, которое заключается в том, что при соприкосновении или расхождении контактов в механических переключающих устройствах, таких, как реле или кнопка, происходит многократное замыкание и размыкание. Схематично это может быть представлено следующим образом:

Чтобы микроконтроллер не обработал такую пачку переключений как множественное нажатие и отпускание кнопки нужно либо применить специальную схему, либо побороть дребезг программно. Идея программной борьбы проста – после того, как произошло переключение (от момента нажатия или отпускания кнопки), в течение некоторого защитного интервала времени игнорировать любые другие переключения.

Существует специальная библиотека Bounce, упрощающая борьбу с дребезгом контактов, и имеющая дополнительные возможности:

Как и в большинстве случаев, установка библиотеки сводится к распаковке архива в подпапку \hardware\libraries\ папки с ПО Arduino.

Полная документация на библиотеку может быть найдена на сайте разработчика, а здесь рассмотрим только наиболее важное.

Bounce – конструктор объекта

Bounce имя_объекта = Bounce(вывод, интервал);

Создает экземпляр класса Bounce, принимает номер вывода, с которого будет считываться сигнал, и длительность защитного интервала в миллисекундах. После создания объекта можно вызывать его методы.

Метод Bounce::update

имя_объекта.update()

Возвращает значение типа int – истину, если состояние вывода изменилось, ложь, если нет.

Метод Bounce::read

имя_объекта.read()

Возвращает значение типа int – состояние вывода.

Метод Bounce::rebounce

имя_объекта.rebounce(время_повтора)

Повторяет последнее произошедшее событие через заданное время в миллисекундах.

Рассмотрим исходный код программы, посылающей в последовательный порт сообщение «pressed» при нажатии кнопки, сообщение «released» при ее отпускании, и повторяющей сообщение «pressed» каждые пол секунды при удержании кнопки.

#include

Bounce bouncer = Bounce(2 , 40 ) ; //создаем экземпляр класса Bounce для 2 вывода

void setup()
{
pinMode(2 , INPUT) ; //переключаем 2 вывод в режим входа
digitalWrite(2 , 1 ) ; //включаем на нем подтягивающий резистор
Serial.begin (9600 ) ; //установка порта на скорость 9600 бит/сек
}

void loop()
{
if (bouncer.update () ) { //если произошло событие
if (bouncer.read () == 0 ) { //если кнопка нажата
Serial.println ("pressed" ) ; //вывод сообщения о нажатии
bouncer.rebounce (500 ) ; //повторить событие через 500мс
} else {
Serial.println ("released" ) ; //вывод сообщения об отпускании
}
}
}

В следующих статьях будут устройства, которые должны управлять внешней нагрузкой. Под внешней нагрузкой я понимаю все, что прицеплено к ножкам микроконтроллера – светодиоды, лампочки, реле, двигатели, исполнительные устройства … ну Вы поняли. И как бы не была заезжена данная тема, но, чтобы избежать повторений в следующих статьях, я все-же рискну быть не оригинальным — Вы уж меня простите:). Я кратенько, в рекомендательной форме, покажу наиболее распространенные способы подключения нагрузки (если Вы что-то захотите добавить – буду только рад).
Сразу договоримся, что речь идет о цифровом сигнале (микроконтроллер все-таки цифровое устройство) и не будем отходить от общей логики: 1 -включено, 0 -выключено. Начнем.

Нагрузкой постоянного тока являются: светодиоды, лампы, реле, двигатели постоянного тока, сервоприводы, различные исполнительные устройства и т.д. Такая нагрузка наиболее просто (и наиболее часто) подключается к микроконтроллеру.

1.1 Подключение нагрузки через резистор.
Самый простой и, наверно, чаще всего используемый способ, если речь идет о светодиодах.

Резистор нужен для того, чтобы ограничить ток протекающий, через ножку микроконтроллера до допустимых 20мА . Его называют балластным или гасящим. Примерно рассчитать величину резистора можно зная сопротивление нагрузки Rн.

Rгасящий = (5v / 0.02A) – Rн = 250 – Rн

Как видно, даже в самом худшем случае, когда сопротивление нагрузки равно нулю достаточно 250 Ом для того, что бы ток не превысил 20мА. А значит, если неохота чего-то там считать — ставьте 300 Ом и Вы защитите порт от перегрузки. Достоинство способа очевидно – простота.

1.2 Подключение нагрузки при помощи биполярного транзистора.
Если так случилась, что Ваша нагрузка потребляет более 20мА, то, ясное дело, резистор тут не поможет. Нужно как-то увеличить (читай усилить) ток. Что применяют для усиления сигнала? Правильно. Транзистор!

Для усиления удобней применять n-p-n транзистор, включенный по схеме ОЭ . При таком способе можно подключать нагрузку с большим напряжением питания, чем питание микроконтроллера. Резистор на базе – ограничительный. Может варьироваться в широких пределах (1-10 кОм), в любом случае транзистор будет работать в режиме насыщения. Транзистор может быть любой n-p-n транзистор. Коэффициент усиления, практически не имеет значения. Выбирается транзистор по току коллектора (нужный нам ток) и напряжению коллектор-эмиттер (напряжение которым запитывается нагрузка). Еще имеет значение рассеиваемая мощность — чтоб не перегрелся.

Из распространенных и легко доступных можно заюзать BC546, BC547, BC548, BC549 с любыми буквами (100мА), да и тот-же КТ315 сойдет (это у кого со старых запасов остались).
- Даташит на биполярный транзистор BC547

1.3 Подключение нагрузки при помощи полевого транзистора.
Ну а если ток нашей нагрузки лежит в пределах десятка ампер? Биполярный транзистор применить не получиться, так как токи управления таким транзистором велики и скорей всего превысят 20мА. Выходом может служить или составной транзистор (читать ниже) или полевой транзистор (он же МОП, он же MOSFET). Полевой транзистор просто замечательная штука, так как он управляется не током, а потенциалом на затворе. Это делает возможным микроскопическим током на затворе управлять большими токами нагрузки.

Для нас подойдет любой n-канальный полевой транзистор. Выбираем, как и биполярный, по току, напряжению и рассеиваемой мощности.

При включении полевого транзистора нужно учесть ряд моментов:
— так как затвор, фактически, является конденсатором, то в моменты переключения транзистора через него текут большие токи (кратковременно). Для того чтобы ограничить эти токи в затвор ставиться ограничивающий резистор.
— транзистор управляется малыми токами и если выход микроконтроллера, к которому подключен затвор, окажется в высокоимпедансном Z-состоянии полевик начнет открываться-закрываться непредсказуемо, вылавливая помехи. Для устранения такого поведения ножку микроконтроллера нужно «прижать» к земле резистором порядка 10кОм.
У полевого транзистора на фоне всех его положительных качеств есть недостаток. Платой за управление малым током является медлительность транзистора. ШИМ, конечно, он потянет, но на превышение допустимой частоты он Вам ответит перегревом.

1.4 Подключение нагрузки при помощи составного транзистора Дарлингтона.
Альтернативой применения полевого транзистора при сильноточной нагрузке является применение составного транзистора Дарлингтона. Внешне это такой-же транзистор, как скажем, биполярный, но внутри для управления мощным выходным транзистором используется предварительная усилительная схема. Это позволяет малыми токами управлять мощной нагрузкой. Применение транзистора Дарлингтона не так интересно, как применение сборки таких транзисторов. Есть такая замечательная микросхема как ULN2003. В ее составе аж 7 транзисторов Дарлингтона, причем каждый можно нагрузить током до 500мА, причем их можно включать параллельно для увеличения тока.

Микросхема очень легко подключается к микроконтроллеру (просто ножка к ножке) имеет удобную разводку (вход напротив выхода) и не требует дополнительной обвязки. В результате такой удачной конструкции ULN2003 широко используется в радиолюбительской практике. Соответственно достать ее не составит труда.
- Даташит на сборку Дарлингтонов ULN2003

Если Вам нужно управлять устройствами переменного тока (чаще всего 220v), то тут все сложней, но не на много.

2.1 Подключение нагрузки при помощи реле.
Самым простым и, наверное, самым надежным есть подключение при помощи реле. Катушка реле, сама собой, является сильноточной нагрузкой, поэтому напрямую к микроконтроллеру ее не включишь. Реле можно подключить через транзистор полевой или биполярный или через туже ULN2003, если нужно несколько каналов.

Достоинства такого способа большой коммутируемый ток (зависит от выбранного реле), гальваническая развязка. Недостатки: ограниченная скорость/частота включения и механический износ деталей.
Что-то рекомендовать для применения не имеет смысла — реле много, выбирайте по нужным параметрам и цене.

2.2 Подключение нагрузки при помощи симистора (триака).
Если нужно управлять мощной нагрузкой переменного тока а особенно если нужно управлять мощностью выдаваемой на нагрузку (димеры), то Вам просто не обойтись без применения симистора (или триака). Симистор открывается коротким импульсом тока через управляющий электрод (причем как для отрицательной, так и для положительной полуволны напряжения). Закрывается симистор сам, в момент отсутствия напряжения на нем (при переходе напряжения через ноль). Вот тут начинаются сложности. Микроконтроллер должен контролировать момент перехода через ноль напряжения и в точно определенный момент подавать импульс для открытия симистора — это постоянная занятость контроллера. Еще одна сложность это отсутствие гальванической развязки у симистора. Приходится ее делать на отдельных элементах усложняя схему.


Хотя современные симисторы управляются довольно малым током и их можно подключить напрямую (через ограничительный резистор) к микроконтроллеру, из соображений безопасности приходится их включать через оптические развязывающие приборы. Причем это касается не только цепей управления симистором, но и цепей контроля нуля.

Довольно неоднозначный способ подключения нагрузки. Так как с одной стороны требует активного участия микроконтроллера и относительно сложного схемотехнического решения. С другой стороны позволяет очень гибко манипулировать нагрузкой. Еще один недостаток применения симисторов — большое количество цифрового шума, создаваемого при их работе — нужны цепи подавления.

Симисторы довольно широко используются, а в некоторых областях просто незаменимы, поэтому достать их не составляет каких либо проблем. Очень часто в радиолюбительстве применяют симисторы типа BT138.

Понравилась статья? Поделитесь ей
Наверх